博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 2318 TOYS (计算几何,叉积判断)
阅读量:6678 次
发布时间:2019-06-25

本文共 4251 字,大约阅读时间需要 14 分钟。

TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 8661   Accepted: 4114

Description

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.
John's parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.

Output

The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 03 14 36 810 1015 301 52 12 85 540 107 94 10 0 10 100 020 2040 4060 6080 80 5 1015 1025 1035 1045 1055 1065 1075 1085 1095 100

Sample Output

0: 21: 12: 13: 14: 05: 10: 21: 22: 23: 24: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

 
 
 
 
 
 
就是给了m个点,落在n+1个区域中,问各个区域有多少个点。
就是利用叉积去判断点在线段的哪一侧,可以二分去做,比较快。
 
/************************************************************ * Author        : kuangbin * Email         : kuangbin2009@126.com  * Last modified : 2013-07-13 17:15 * Filename      : POJ2318TOYS.cpp * Description   :  * *********************************************************/#include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;struct Point{ int x,y; Point(){} Point(int _x,int _y) { x = _x;y = _y; } Point operator -(const Point &b)const { return Point(x - b.x,y - b.y); } int operator *(const Point &b)const { return x*b.x + y*b.y; } int operator ^(const Point &b)const { return x*b.y - y*b.x; }};struct Line{ Point s,e; Line(){} Line(Point _s,Point _e) { s = _s;e = _e; }};int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2{ return (p1-p0)^(p2-p0);}const int MAXN = 5050;Line line[MAXN];int ans[MAXN];int main(){ //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int n,m,x1,y1,x2,y2; bool first = true; while(scanf("%d",&n) == 1 && n) { if(first)first = false; else printf("\n"); scanf("%d%d%d%d%d",&m,&x1,&y1,&x2,&y2); int Ui,Li; for(int i = 0;i < n;i++) { scanf("%d%d",&Ui,&Li); line[i] = Line(Point(Ui,y1),Point(Li,y2)); } line[n] = Line(Point(x2,y1),Point(x2,y2)); int x,y; Point p; memset(ans,0,sizeof(ans)); while( m-- ) { scanf("%d%d",&x,&y); p = Point(x,y); int l = 0,r = n; int tmp; while( l <= r) { int mid = (l + r)/2; if(xmult(p,line[mid].s,line[mid].e) < 0) { tmp = mid; r = mid - 1; } else l = mid + 1; } ans[tmp]++; } for(int i = 0; i <= n;i++) printf("%d: %d\n",i,ans[i]); } return 0;}

 

 
 
 
 

转载地址:http://wiyao.baihongyu.com/

你可能感兴趣的文章
第一个 Metro程序(空白应用程序)
查看>>
面向对象----方法的重载
查看>>
linux降级重新安装gcc
查看>>
iOS网络编程之同步、异步、请求队列 2014-12-7
查看>>
链表的应用~~~~~~一元多项式的相加——原创
查看>>
阿花宝宝 Java基础笔记 之 多态
查看>>
HTML5学习之路——HTML 5 Web 存储
查看>>
enum和int、string的转换操作
查看>>
C# ACCESS数据库操作类
查看>>
详解vue通过NGINX部署在子目录或者二级目录实践
查看>>
括号匹配算法思想
查看>>
HDU 1043 Eight 【经典八数码输出路径/BFS/A*/康托展开】
查看>>
589. N叉树的前序遍历
查看>>
Java线程池使用和常用参数(待续)
查看>>
java 中 get post
查看>>
Hive学习之Locking
查看>>
关于Lucene全文检索相关技术
查看>>
简单理解冒泡排序
查看>>
halcon算子翻译——fuzzy_measure_pairing
查看>>
二项式展开
查看>>